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A B S T R A C T   

Counting the trees in a given area or city is meaningful when making decisions for government policies and 
administration, including the international afforestation effort (i.e., the Trillion Trees Campaign). Determining 
individual trees on a large scale poses significant challenges, especially in subtropical and tropical areas, because 
of their diverse crown characteristics. Using very high-spatial-resolution images, we can see the tree crowns 
clearly. In this study, we counted the population number of trees in the subtropical mega city of Guangzhou, and 
we used an end-to-end tree-counting deep-learning framework in the regional-scale tree detection by delineating 
each tree crown. It is a simple framework in which individual trees can be detected directly without manual 
operation. We used the cascade mask regions with convolutional neural networks (CMask R-CNN) as the 
backbone and added three types of attention modules to build the derivatives of the CMask R-CNN. The 
experimental results showed that the CMask R-CNN performed the best among all of the methods, and more than 
112 million individual trees with crown sizes of large than 1 m2 were detected. The experimental assessment 
indicated that the accuracy was 88.32% in terms of the R2 value and 82.56% in terms of the F1-score. This study 
not only revealed the number of trees, but it also provided the tree density at different scales, which is a 
prominent component of the ecosystem structure. We also analyzed the tree density at the 30 m and 1000 m 
scales. The experimental results showed that Guangzhou has a high canopy cover with a tree density of 150 trees 
per hectare. For the entire city, the tree density is highest in the northern area of Guangzhou, followed by the 
central part. From the central-western part to the central-eastern part, the tree density increases. The lowest tree 
density is located in the southern part of Guangzhou near the Pearl River estuary, which is a basic farmland 
conservation area. It is notable that the tree density of the urban land is about 15 trees per 900 m2, indicating a 
good living environment. The method developed in this study provides a flexible means of large-scale tree 
counting without manual operation based on very high-spatial-resolution images.   

1. Introduction 

Trees contribute extensively to the biogeochemical cycles (Crowther 
et al., 2014; Hansen et al., 2013), and they are considered to be the best 
carbon capture and sequestration carriers in history, so they play an 
important role in reducing greenhouse gas emissions and mitigating the 
risk of climate change (Crowther et al., 2015). Currently, most previous 
research has focused on trees in forest area (Brandt et al., 2020; Pan 
et al., 2011). However, the urban carbon cycle is a popular issue in the 
fields of international politics and economics. Each tree is an important 
element of the vegetation ecosystem (Duinker et al., 2015; Romero- 

Lankao et al., 2018). Ascertaining the number of trees in a given area 
or city is meaningful when making decisions about government policies 
and administration. This number can provide the basis for forest in-
ventory and carbon sequestration capacity assessments and holds great 
significance for incorporating urban trees into regional climate action 
plans and the carbon offset market as well as for promoting sustainable 
urban development. In addition, it is important for international affor-
estation efforts, such as the Trillion Trees Campaign launched at the 
World Economic Forum in 2020. Such projects need a baseline of the 
current number of trees in a certain area or city to establish the target 
and evaluate the result of the task (Crowther et al., 2015). 
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Remote sensing makes large-scale Earth observation available, and 
the large number of forest cover studies have produced many data 
products (Pfeifer et al., 2012; Tuanmu and Jetz, 2014). However, the 
problem of counting the tree population is also relevant to many ap-
plications, such as forest inventories and environmental protection. 
With the increasing availability of high- and very high-spatial-resolution 
remote sensing data, we can gather information at the individual tree 
level (Qiu et al., 2020). Based on the spectral and textural features of 
high-resolution optical images or the elevation features of the point 
cloud, numerous automatic methods, such as watershed segmentation 
(Chen et al., 2006), region growing (Erikson, 2003), polynomial fitting 
(Wu et al., 2019), distance discriminant clustering (Li et al., 2012), 
adaptive mean shift (Yan et al., 2020), template matching (Vibha et al., 
2009), and object-oriented image segmentation (Qiu et al., 2020) have 
been developed to detect individual trees in temperate forests (Dun-
canson et al., 2014). Rizeei et al. (2018) combined object-oriented image 
segmentation and regression analysis to count oil palms based on 
WorldView-3 and Light Detection and Ranging (LiDAR) data. Norzaki 
and Tahar (2019) reported that template matching performed better 
than other segmentation approaches. These studies often were based on 
small datasets and were conducted in small areas (Stereńczak et al., 
2020; Zhou et al., 2017). Recently, Brandt et al. (2020) attempted to 
map the individual trees in the West African Sahara, which has a large 
area of 1.3 million km2. Their work involved processing more than 
50,000 VHR satellite images (i.e., a very large dataset), requiring a 
powerful computing ability. Although extensive efforts have been made, 
individual tree detection for forest inventories on a large scale remain a 
major challenge, especially in the subtropical and tropical areas. In these 
high-density subtropical and tropical areas, trees may have diverse ar-
chitecture and crown characteristics (Wagner et al., 2018), such as 
crowns covered by lianas and new leaves on the crowns of evergreen 
trees, making individual tree detection much more difficult. This task, 
however, is not impossible, merely challenging. Khan and Gupta (2018) 
compared different tree-counting methods and found that deep learning 
is a quick and effective method. 

Deep-learning networks have been popular since the deep belief 
network was first proposed in 2006 (Hinton et al., 2006). Over the past 
decade, deep learning has been demonstrated to have a mature and 
reliable ability in image classification (Chan et al., 2015), semantic 
segmentation (Long et al., 2015), and object detection (Lin et al., 2017) 
with the development of the Graphics Processing Unit (GPU), as well as 
public datasets, such as ImageNet. Image classification aims to assign a 
label to an image from a given dataset. Typical convolutional neural 
networks (CNNs) include the AlexNet (Krizhevsky et al., 2012), VGG 
(Simonyan and Zisserman, 2014), ResNet (He et al., 2016), and Dense-
Net (Zhu and Newsam, 2017). With the development of deep networks, 
the number of CNN layers has increased from several to hundreds. Many 
architectures, such as the skip layer, dense connect, inception module, 
gate residual unit, and attention module, have been proposed to improve 
the feature extraction ability (Chen et al., 2019b). Zheng et al. (2020) 
developed a Multi-level Attention Domain Adaptation Network 
(MADAN) for counting oil palm trees based on high-resolution images. 
They used a classification method with lots of post-processing. Semantic 
segmentation is used to segment pixel regions containing different cat-
egories of objects and to determine their categories. The Fully Con-
volutional Network (FCN) (Long et al., 2015), SegNet (Badrinarayanan 
et al., 2017), Unet (Ronneberger et al., 2015), Deeplab (Chen et al., 
2017), and PSPNet (Chen et al., 2017) are commonly used networks. In 
addition, many derivatives of these FCNs have been developed for 
lightweight modeling (Chen et al., 2021a) and model performance 
improvement (Chen et al., 2021b). In this type of deep network, various 
types of up-sampling structures have been used to restore the com-
pressed features from the CNN encoding to the same size as the input 
image. Yao et al. (2021) used four networks, including CNNs and FCNs, 
for tree counting using GF-II images. They reported that the encoder- 
decoder FCNs had a better accuracy than the CNNs. A similar study 

was conducted by Tong et al. (2021), and they counted trees using a 
point-wise supervised segmentation network. However, semantic seg-
mentation cannot separate one object from another object in the same 
category. Object detection or recognition detects each object in the input 
image and assigns the corresponding object category. The object can be 
detected individually using a bounding box. The popular algorithms 
include Region-based Convolutional Neural Networks (RCNNs) (Gir-
shick et al., 2014), SPPNet (He et al., 2015), and Fast RCNNs (Ren et al., 
2015). These methods are two-step algorithms. First, they obtain the 
proposed regions, and then, they conduct bounding box refinement and 
category prediction. Yolo started the era of one-step object detection. 
Weinstein et al. (2020) proposed a DeepForest network for individual 
tree detection based on high-resolution red–greenblue (RGB) images, 
which is encouraging. Ammar et al. (2021) proposed a deep-learning 
framework for counting palm trees based on aerial geotagged images, 
in which three object detection networks were involved. However, the 
tree crowns could not be delineated. Instance segmentation combines 
the three types of tasks and can delineate the fine outline of each 
instance and the category (He et al., 2017). Counting trees through 
crown delineation is an instance segmentation task. Ocer et al. (2020) 
tried to detect the trees using the Mask R-CNN and a feature pyramid 
network (FPN). Their study area was a campus about 93 ha, in which 
most of the trees were isolated trees. Overall, most of these studies have 
tested their methods with a relatively open forest, such as oil palm trees, 
olive trees, and fruit trees (Osco et al., 2020; Salamí et al., 2019; Santoro 
et al., 2013), using high-resolution aerial/satellite images or LiDAR 
data. 

Tropical and subtropical trees are an important component of global 
trees, accounting for about 42% of all trees worldwide (Crowther et al., 
2015). The goal of this study was to count the trees in a subtropical mega 
city by delineating the crowns in very high-resolution (VHR) images. To 
achieve this goal, we developed a wall-to-wall tree delineation method 
using the cascade Mask R-CNN network (Chen et al., 2019a). Compared 
with the Mask R-CNN, it can perform cascaded refinement of the 
instance segmentation through joint multistage processing. The VHR 
images were cropped into small patches and directly fed into the cascade 
Mask R-CNN for the individual tree crown delineation. The performance 
was assessed using both the error matrix and the coefficient of deter-
mination. Furthermore, we analyzed the tree density at different scales 
and the characteristics of the tree density in different land use types 
based on the trees detected. 

2. Study materials 

2.1. Study area 

In this study, we selected Guangzhou (centered at 23◦06′32′′N, 
113◦15′53′′E) as the study area, which is the third largest city in China 
and is (Fig. 1). It contains 11 administrative districts, with an area of 
7434.4 km2, and is located on the subtropical coast and close to the 
South China Sea. It has a marine subtropical monsoon climate, which is 
characterized by a warm and rainy climate with an annual average 
temperature of 20–22 ◦C. Guangzhou is a hilly area with high terrain in 
the northeast and low terrain in the southwest. In the north, there is a 
forest concentrated hilly area, and the highest peak has an altitude of 
1210 m. Abundant rainfall is conducive to the growth of plants, and the 
vegetation is green year-round. The trees in Guangzhou transition from 
the subtropical to tropical zone. Although the urbanization rate was 
86.46% in 2020, 84 forest reserves or parks in Guangzhou were located 
in almost all of the districts, the largest of which is located in the district 
of Conghua. 

2.2. Airborne optical images 

The RGB images of Guangzhou City (22◦26′–23◦56′N, 
112◦57′–114◦3′E) were acquired using a digital camera mounted on a 

Y. Sun et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 106 (2022) 102662

3

Yun5 turboprop airplane under clear sky conditions. Because this is a 
large area, the data collection took a long time (from September 2017 to 
January 2019). The images were acquired in three commonly used 
spectral bands (i.e., RGB), with a spatial resolution of approximately 0.1 
m. Uniform color operation was carried out when there was a color 
difference caused by the light conditions during the imaging. After this, 
the images were mosaicked into a complete image using the automatic 
seamless mosaic method. All of the images were orthorectified to the 
CGCS 2000 coordinate system. For the convenience of storage and 
operation, the image of Guangzhou was cropped into image tiles. A total 
of 7902 10,000 × 10,000 pixel image titles were obtained. We used all of 
the images in this study regardless of where the area was located (in the 
water or no tree cover). 

2.3. Land cover maps of Guangzhou 

For further analysis, we used the GlobeLand30 land cover products 
with a spatial resolution of 30 m for the land cover extraction of 
Guangzhou. GlobeLand30 was produced by the National Basic 
Geographic Information Center of China based on Landsat TM5, ETM+, 
and OLI and HJ-1 and GF-1 satellite images (http://www.globallandc 
over.com/). The products for both 2010 and 2020 were employed, 
and the land cover types were merged into six classes: farmland, 
forestland, grassland, water bodies, urban land, and other land. To 
investigate the change in the tree population, we derived a land cover 
change map of Guangzhou from the bitemporal land cover maps. 
Finally, the land cover maps were reprojected onto the CGCS 2000 co-
ordinate system to match the airborne optical images and the tree 
detection results. 

3. Methods 

In this study, we conducted tree counting in the subtropical mega 
city of Guangzhou. We used 7902 airborne optical image titles, which 
each contained 10,000 × 10,000 pixels (1000 m × 1000 m), to ascertain 
the number of trees. First, we cropped the image titles into small patches 
according to the relative position. Second, the image patches were input 
into a modern instance segmentation network (Cascade Mask R-CNN) 

for training and testing to detect the individual tree crowns. The area of 
the tree canopy and the location (row and column) of each tree center 
were recorded. As the detected tree location was in the image patch 
without coordinate information, the detected trees were reprojected 
onto the original CGCS 2000 coordinate system for further assessment 
and analysis. The entire workflow was simple and easy to implement, 
which is a clear benefit for large-scale applications. 

3.1. Sample labeling 

Based on the GPU memory of our computer, we chose two patch 
sizes, 1000 × 1000 pixels and 1024 × 1024 pixels, as the model input 
sizes. We accounted for the different sceneries in the city in the tree 
sample selection, including urban land, parks, farmland, and forests, for 
the sample selection (Fig. 2), and the image patches were randomly 
selected from these scenes. As the trees are green all year long in 
Guangzhou, we did not consider the seasonal effect in the sample se-
lection. A tree instance dataset was produced based on these very high- 
spatial-resolution aerial images and will be made public later. The 
training dataset contained 477 1024 × 1024 pixels image patches, and 
the test dataset contained 51 image patches of both sizes (1000 × 1000 
pixels and 1024 × 1024 pixels). We labeled each tree crown manually 
for the instance segmentation using ArcGIS 10.4.1. We delineated the 
tree crowns based on visual interpretation. As the light cannot penetrate 
the canopy, we considered only the upper forest trees. Finally, 118,948 
and 9021 tree crown instances were labeled for the model training and 
testing, respectively. To detect all of the trees, the 7902 airborne optical 
image tiles were cropped into smaller 1000 × 1000 pixels (100 m × 100 
m) image patches, and 790,200 images were generated covering all of 
Guangzhou. 

3.2. Tree counting based on Cascade Mask R-CNN 

Instance segmentation has been improved significantly because of 
the public COCO dataset. The Cascade Mask R-CNN has been demon-
strated to have an excellent ability in leveraging the reciprocal rela-
tionship between detection and segmentation (Chen et al., 2019a). 
Compared with the Mask R-CNN, it improves the bounding box regres-
sion and mask detection by the cascade and multi-task learning. As is 
shown in Fig. 3, we developed the tree crown delineation framework 
based on the Cascade Mask R-CNN. This framework allowed the input of 
an image patch of any size within the memory of the GPU, and we 
slightly modified the data input of the network to fit our dataset. 
Attention mechanisms have been shown to be helpful in information 
selection and feature representation in channel, spatial, and temporal 
wise based on the fusion of different level features. Here, we added three 
types of attention modules—that is, squeeze-and-excitation (SE) (Hu 
et al., 2018), convolutional block attention module (CBAM) (Woo et al., 
2018), and Coordinate Attention block (CA) (Hou et al., 2021)—to the 
feature extraction part to achieve better tree crown detection. We also 
amended the output layer for the convenience of obtaining the statistics 
of the results. The proposed architecture begins with feature extraction, 
and we introduced ResNet50 and FPN (Lin et al., 2017) as the backbone 
network. The attention modules were inserted in the bottleneck of 
ResNet50 (Fig. 3). The feature extraction part reduced the dimension 
and extracted the useful features. With the attention module, different 
levels of spatial and semantic features could be obtained for the subse-
quent tasks. The Regional Proposal Network (RPN) generated the indi-
vidual tree proposal regions (anchor boxes) based on the detected 
features from the backbone network. Moreover, the RPN distinguished 
the individual trees from the background (other objects) and refined the 
anchor boxes using the Intersection Over Union (IOU) between the an-
chor boxes and the ground truth. The refined anchor boxes from the RPN 
were combined with the feature maps (Regions Of Interest, ROIs) and 
then were input into the following procedures: individual tree detection 
(boundary box in Fig. 3) and tree crown segmentation (mask in Fig. 3). 

Fig. 1. The study area in Guangzhou, China.  
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The feature maps were often smaller than the input images in terms of 
size. The ROI Align tool maps the ROIs to the location of the input image 
and makes them the same size. The position of the individual tree 
bounding box (green rectangles in Output in Fig. 3), the crown size, and 
the score of the detected instance were recorded. As the spatial reference 
was missed in the instance segmentation, we reprojected the detected 
instances onto the original coordinate system according to the relative 
location relationship. Compared with segmentation, the tree crowns 
could be delineated without post-processing. 

The experiment was implemented in Ubuntu18.04. We used the 
Cascade Mask R-CNN in MMdetection 2.7 for the tree crown detection 
and built the attention derivatives, which were run on an NVIDIA 
GeForce 2080Ti with an 11 GB memory based on Pytorch1.4. The details 
of the network are shown in Table 1. The backbone of the ResNet50 and 
the neck of the FPN were used for the feature extraction, and the cascade 
ROI heads were then used for the tree location detection and tree crown 
delineation. The parameters were set as follows: the base learning rate 
was set as 0.02. The learning rate was adaptively updated using the 
warmup strategy for the first 1000 iterations, and the warmup ratio was 
0.0001. After this, the learning rate was adjusted to 10% of the existing 
learning rate at 50, 80, and 100 epochs using the learning rate decay. 
There were a total of 110 epochs in the training phase. The momentum 

was set as 0.9, and the weight decay was 0.0001. 

3.3. Assessment 

To assess the performance of the attention guided Cascade Mask R- 
CNN, we also used the famous object detection model YOLO to compare 
the proposed method with other methods. Finally, five models (i.e., the 
Cascade Mask R-CNN, SE Cascade Mask R-CNN, CBAM Cascade Mask R- 
CNN, CA Cascade Mask R-CNN, and YOLO) were used to conduct tree 
counting in Guangzhou. We employed two types of assessments. One 
was the error matrix, which assesses the percentage of trees detected. 
For the 51 test images, which each corresponded to about a 100 m ×
100 m plot, we counted the trees that were correctly detected (true 
positive, TP), incorrectly detected (false positive, FP), and undetected 
(false negative, FN); then, we calculated the precision, recall, F1 score, 
and detection rate (DR) (Yin and Wang, 2016). The closer the value of F1 
was to 1, the better the counting effect was. The DR could be greater 
than 1 (overestimation), less than 1 (underestimation), and equal to 1 
(good estimation). 

Fig. 2. Tree sample selection from different sceneries in the city, including (a) urban land, (c) forests, (e) factories, (g) lakeside, (i) farmland, and (k) parks. (b), (d), 
(f), (h), (j), and (l) are the corresponding labels for sceneries (a), (c), (e), (g), (i), and (k), respectively. The masks with different colors in the labeling are the in-
dividual tree crowns. 
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FP = DT − TP
FN = GT − TP

Precision = TP/DT
Recall = TP/GT

F1 = 2 × Precision × Recall/(Precision + Recall)
DR = DT/GT

(1)  

where DT is the number of trees detected, and GT is the total number of 
trees labeled as ground truth in each plot. 

We also used the coefficient of determination R2 and root mean 
square error (RMSE). In this case, we compared the number of trees 
labeled tree and number of trees detected in each plot and calculated the 
R2 and RMSE for the model assessment. 

4. Results 

4.1. Visual performance of tree counting 

Fig. 4 shows the tree detection results for the different sceneries, with 
each being 1000 × 1000 pixels. The first row and second row in Fig. 4 
show the trees in the parks by the river and the urban roadside trees, 
respectively. The plots had comparatively low canopy densities, and 
almost all of the trees were well detected by the four approaches, except 
YOLO, regardless of how large the crown was. Many of the shrubs in the 
top left corner in the first row were wrongly detected by the methods 
that contained attention modules. 

The third row and forth row in Fig. 4 show the tree detection results 
in the residential area. Similar to the simple scenes in the first two rows 
in Fig. 4, good results were also achieved in the open residential area. 
The fifth row in Fig. 4 shows the trees scattered in the farmland. Again, 
the four approaches, except for YOLO, successfully distinguished the 
trees from the crops. In an orchard with relatively dense trees (last row 
in Fig. 4), the canopy was complicated because of the shadows and 
overlapping trees. The performance was slightly worse compared with 
the previous sceneries. The algorithm detected most of the trees, except 
for the trees with similar textures and indistinct crowns and some of the 
trees that blended into each other. Overall, the visual assessment of the 
tree detection results showed that most of the trees were well extracted, 
even the trees that slightly overlapped. The trees were somewhat 

Fig. 3. The framework of the tree counting based on the Cascade Mask R-CNN, and the attention modules added to the backbone of the ResNet.  

Table 1 
The detailed parameters of the Cascade Mask R-CNN Network.   

Backbone: 
ResNet50 

Neck: 
FPN 

Regional Proposal 
Network (RPN) 

Stages 4 5 – 
In channels 3 256, 512, 1024, 2048 

for each stage 
256 

Out 
channels 

256, 
512, 
1024, 
2048 
for each stage 

256 256 

Anchor_ 
generator 

– – Scale: 8 
Ratio: [0.5, 1.0, 2.0] 
Step: [4, 8, 16, 32, 
64] 

Loss 
function 

– – Classification: 
CrossEntropyLoss 
BBox Regression: 
GIoULoss  

ROI-head: 
Cascade Roi 
Head/RoIAlign 

BBox-head Mask Head 

Stages Cascade Stage: 3 
The weight of 
each stage: 
[1, 0.5, 0.25] 

– 4 

In channels 256 256 256 
Out 

channels 
BBox prediction: 
7 × 7 × 256 
Mask prediction: 
14 × 14 × 256 

Fully connected layer 
output: 
1024 

256 

Loss 
function 

– Classification: 
CrossEntropyLoss 
BBox Regression: 
GIoULoss 

CrossEntropyLoss  
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underestimated, however, as the dense canopies often formed a huge 
tree mass (last row in Fig. 4). Note that the trees in the high-density 
settlement area were well differentiated, including those hidden in the 
shadows of buildings. In terms of the methods, except YOLO, similar 
results were obtained visually. However, the CMask-R-CNN method had 

the best tree location detection results, that is, more trees were incor-
rectly detected by the methods containing attention modules than by the 
CMask-R-CNN compared with the ground truth. 

Fig. 4. Tree detection results for the different sceneries.  
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4.2. Tree distribution in different land covers throughout Guangzhou 

Based on the performances of the five methods, we used the tree- 
counting results of CMask-R-CNN for further analysis. We detected 
about 112 million trees with crowns larger than 1 m2 throughout the 
entire city of Guangzhou (Table 2). Among the 11 districts, Conghua and 
Zengcheng had the most trees (i.e., 38.8 million and 28.8 million, 
respectively). They accounted for about 60% of the total trees in the city. 
This result was not surprising given that these two districts contain 
several large forest parks. Huadu and Baiyun contained the third and 
fourth largest number of trees, followed by Huangpu and Panyu. As the 
deputy center of Guangzhou, Nansha also had fewer trees than the other 
non-central region. As the three districts with the highest population 
densities, Haizhu, Liwan, and Yuexiu contained a total of about 2 million 
trees. 

In addition to the number of trees, the tree density is a prominent 
component of the ecosystem structure and is important for modeling 
biological and biogeochemical processes (Crowther et al., 2015). Thus, 
we analyzed the tree density at the 1000 m scale (per 100 ha) and 30 m 
scale (per 900 m2). 

Fig. 5 shows the tree density map per 100 ha. Comparatively, the 
average canopy cover of the entire city was quite high (i.e., about 150 
trees per hectare). The tree density distribution was mainly consistent 
with the forest coverage across the entire city. The tree density was high 
in the northern area of Guangzhou, followed by the central part. From 
the central-western part to the central-eastern part, the tree density 
increased. Although Yuexiu and Liwan had small numbers of trees, their 
tree densities were not the lowest. The tree density in the southern part, 
near the Pearl River estuary, was the lowest in Guangzhou. This is 
mainly because this area is a basic farmland conservation area. The 
built-up areas in the other non-central districts also had lower tree 
densities, such as the center of Conghua and northern part of Baiyun. 

We also investigated how the trees were distributed in the different 
land cover types at a spatial resolution of 30 m (Fig. 6a). At this scale, 
similar tree density patterns were obtained per 100 ha, but more 
detailed information can be obtained. Fig. 6b shows the tree density in 
the urban land. Although the number of trees in the central area, such as 
the Yuexiu district, is lower than in Conghua and Zengcheng, the tree 
density in the urban land is similar throughout the entire city (i.e., about 
15 trees per 900 m2), indicating the good living environment. Among 
the central districts, Baiyun had the highest tree density in the urban 
land. Fig. 6c shows the tree density (an average of 32 trees per 900 m2) 
in the forestland, which is concentrated in the central and northern parts 
of Guangzhou. We believe that it is underestimated in Fig. 6f. Of the two 
districts with rich forest resources, Conghua had a greater tree density 
than Zengcheng in the forestland. Fig. 6d shows the tree density in the 
grassland, which accounted for a small proportion and was scattered 
throughout the city. It almost had the lowest tree density compared with 
other land cover types. Fig. 6e shows the tree density in the farmland. All 
of the districts contained farmland, except for Yuexiu and Liwan. There 
were also trees in the farmland, with a density of about 20 trees per 900 
m2, and some of the trees were fruit trees. 

Guangzhou is a subtropical city with large tree crowns. Fig. 7 shows 
the trees with crowns larger than 200 m2 per 100 ha, and there are about 
226,000 large trees. Based on visual inspection, these large trees were 

located in all of the districts in Guangzhou, and most of the area with 
high densities of large trees were located in the central-western part. In 
the older parts of the city, such as Yuexiu, Liwan, and Tianhe, there were 
more than 275 large trees per 100 ha in some places. These trees are 
often banyan trees, and some have long histories and are ancient and 
famous trees with a high protection value. In addition, there were also a 
small number of areas with high densities of large trees in the northern 
part of Conghua, eastern part of Zengcheng, and southern part of 
Nansha. 

We investigated the changes in the tree population in the past decade 
using bitemporal GlobeLand30 land cover maps. First, we obtained a 
map of the change in Guangzhou from 2010 to 2020. Then, we extracted 
the changes in the land use types: forestland-urban land, urban land- 
forestland, urban land-farmland, and urban land-grassland. Then, we 
overlapped the map of the changes (Fig. 8) and the tree density map to 
identify the tree changes caused by urbanization. The statistical results 
showed that about 200 km2 changed from forest to urban land. Based on 
the current average tree density in the forestland, 4,416,459 trees were 
cut down and 2,694,652 trees were retained or replanted during the 
process of urbanization. About 689,005 trees were replanted through 
reforestation projects. Overall, the trees replanted are distributed in the 
forestland (about 38.96%), farmland (55.51%, including some fruit 
trees), and grassland (5.53%, including ornamental trees). 

4.3. Tree-counting assessment 

We produced a test dataset by randomly selecting tree samples. The 
test dataset contained 51 image patches (51 plots) with a total of 9021 
trees, in which patch sizes of both 1000 × 1000 pixels and 1024 × 1024 
pixels were used. We accounted for the different sceneries in the city in 
the tree sample selection, including urban land, parks, farmland, and 
forestland. Five instance segmentation methods were tested for the tree 
counting, and their accuracies are reported in Table 3. Among all of the 
methods, the CMask-R-CNN performed the best in terms of the error 
matrix, with an F1 of 82.56%. This index reflects the ability to detect the 
tree location. Although attention blocks have been shown to be effective 

Table 2 
The number of trees in each district of Guangzhou.  

District Number of trees District Number of trees 

Baiyun 8,577,201  Nansha 3,499,431 
Conghua 38,819,357  Panyu 6,837,273 
Haizhu 984,068  Tianhe 2,010,680 
Huadu 14,789,120  Yuexiu 382,079 
Huangpu 7,329,621  Zengcheng 28,788,502 
Liwan 569,556    

Fig. 5. Tree density map of Guangzhou per 100 ha.  
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in many applications, the individual tree detection was not beneficial in 
strengthening the features derived from the backbone. In contrast to the 
detection of other objects, there was no obvious contrast between 
adjacent trees. The refinement of the features via an attention module 
may lose some useful features for tree crown delineation, and the in-
formation from different channel-wise or spatial-wise detection is 
important. Of the three types of attention modules, the CA-CMask-R- 
CNN achieved the best accuracy, indicating that it was effective at 
extracting features in both the X and Y directions. 

Although the CBAM-CMask-R-CNN detected the closest number of 
trees to the ground truth, with a detection rate of 93.49%, many of the 
large trees were overestimated (Fig. 4). We also assessed the different 
methods using the R2 and RMSE values (Fig. 9). The number of trees in 
each plot varied from dozens to more than 400 according to the different 
sceneries. The results were similar based on the metrics of the error 
matrix. The CMask R-CNN performed the best, with an R2 of 88.32 and 

an RMSE of 47.34. Using the CMask R-CNN, 8249 trees were detected. 
Table S1 shows the accuracies of each plot with different canopy den-
sities. The precision of all of the test plots is 86.42%. The metric of recall 
was worse than the precision, which indicated that the trees were often 
underestimated during the detection process. The most probable reason 
for this underestimation is that the detection method incorrectly iden-
tified overlapping canopies for one tree in the most challenging plot (last 
row in Fig. 4). The F1-score in Table S1 shows the weighted combination 
of the precision and recall, and the F1-score was 0.8256 for all of the test 
plots. 

5. Discussion 

According to the results presented thus far, we found that the tree- 
counting results varied for the different scenes. As is shown in Fig. 4, 
the methods detected the trees in the non-forest areas well. It performed 

Fig. 6. Tree density distribution in different land cover types in Guangzhou at a spatial resolution of 30 m. (a) Tree density map of all of the land cover types, (b) Tree 
density map in the farmland, (c) Tree density map in forestland, (d) Tree density map in grassland, (e) Tree density map in urban land, and (f) land cover map of 
Guangzhou in 2020. 
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well in the scenes with large contrast, such as water and impervious 
surfaces. Unexpectedly, it also performed well in the cropland and could 
distinguish scattered trees from crops. Unfortunately, the trees were 
underestimated in the densely distributed forest. In the dense forest, the 
results were often underestimated because some of the tree crowns 
connected with each other heavily and did not exhibit clear boundaries. 
For the trees with large crowns, however, the methods overestimated 
the number of trees because of the shadows of the large crowns. Based 
on all of the metrics, the CMask-R-CNN method had the best perfor-
mance. Although the CBAM-CMask-R-CNN method achieved the highest 
tree detection rate, its F1 was lower than those of the other methods, 
except for YOLO, indicating that it incorrectly detected more trees than 
the CMask-R-CNN. The reason for this may be that the feature refine-
ment through the attention modules may have lost some useful features 
for tree crown delineation. In addition, the one-step YOLO method lost 
the details of the high-resolution images and missed many trees. 

In addition to the model’s ability, the limitation of the data source 
was another important reason for accurate tree counting. The imaging 
conditions may affect the inclination of trees, the shadows of high 
buildings, and the ground object spectrum. The spectral resolution of the 
R-G-B images used was also limited. All of these factors influenced the 
individual tree detection. To improve the accuracy in the forestland, we 
would like to incorporate other data sources, such as hyperspectral 
images and LiDAR point clouds. Moreover, we will develop deep- 
learning networks for the combination of images and three- 
dimensional point cloud data to achieve better individual tree detection. 

Although we accounted for different number of sceneries in the se-
lection of the training samples across the entire city, the labeling of the 
trees in the forest area was very difficult because the tree crowns 
sometimes could not be recognized with the human eye. In addition, 

some were located deep in the primary forest, which was very difficult to 
visit. This also influenced the model’s performance, especially in the 
areas of dense forest. Accordingly, it is necessary to label reliable tree 
crowns in dense areas to achieve better training of the deep instance 
segmentation network in the future. 

Mapping the tree density is meaningful work for foresters, city 
managers, and scientists. Few studies have been conducted on this issue, 
and Crowther et al. (2015) is the only study to have mapped the tree 
density at a global scale. The spatial resolution of their work was 1 km2, 
however, which was lower than that used for regional applications. 
Mapping the tree density at a finer scale, such as 30 m, is a good idea 
because it can clearly specify the detailed tree distribution in the area 
and also can be associated with 30 m resolution land cover maps. 
Therefore, many other fine-scale analyses can be achieved. In this study, 
we mapped the tree density at both the 1000 m and 30 m scales. The 
1000 m scale was a moderate scale for investigating how the trees were 
distributed. The results of the 30 m scale analysis showed the tree 
density in the urban land, farmland, and grassland, which clarified the 
vegetation components of the land cover. Accordingly, we could infer 
the urban living environment, whether the farmland included an or-
chard, and whether there were landscape trees in the grassland. More-
over, this method provided an accurate underlying surface for land 
surface process modeling. 

6. Conclusions 

In this study, the number of trees in the subtropical mega city of 
Guangzhou in southern China was counted. We used an end-to-end tree- 
counting framework for the regional-scale tree detection. Based on VHR 

Fig. 7. Number of trees with crowns larger than 200 m2 per 100 ha.  Fig. 8. Map of the land cover changes in Guangzhou showing four types 
of change. 
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images, each tree crown was delineated. The framework allowed the 
input of image patch of any size within the memory of the GPU, and we 
used two sizes of 1000 × 1000 pixels and 1024 × 1024 pixels. The ac-
curacies of five deep networks were assessed, among which the CMask- 
R-CNN performed the best. The experimental results showed that 
attention modules may not work well because the boundaries between 
adjacent trees are not always clear. Using the CMask-R-CNN, about 112 
million trees were detected in Guangzhou, with an R2 of 0.8832, an F1- 
score of 0.8256, and a DR of 0.9144. The accuracy assessment also 
revealed that the number of trees was somewhat underestimated. 
Moreover, we analyzed the tree density at the 30 m and 1000 m scales. 
Guangzhou contained 150 trees per hectare, which is a high canopy 
cover. Although urbanization took place in the city over the past decade, 
about 37% of the trees were retained or replanted in the newly added 
urban land during the process of urbanization. For the entire city, the 
tree density in the urban land was about 15 trees per 900 m2, indicating 
a good living environment. The method developed in this study provides 

a flexible means of counting trees on a large scale without manual 
operation based on VHR imagery. This study not only revealed the 
number of trees but also provided the tree density at different scales, 
which is a prominent component of the ecosystem structure. The model 
code and the study materials will be made public soon. 
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Table 3 
The accuracy of the tree detection results obtained using five instance segmentation methods.   

DT GT TP FP FN Precision(%) Recall(%) F1 (%) DR (%) 

YOLO 3236 9021 3055 180 5994  94.41  33.87  49.85  35.87 
CMask-R-CNN 8249 9021 7129 1102 1922  86.42  79.03  82.56  91.44 
SE-CMask-R-CNN 7936 9021 6189 1732 2848  77.99  68.61  72.99  87.97 
CA-CMask-R-CNN 8214 9021 6291 1915 2745  76.59  69.74  73.00  91.05 
CBAM-CMask-R-CNN 8434 9021 6322 2101 2711  74.96  70.08  72.44  93.49  

Fig. 9. The R2 and RMSE values of the test dataset.  
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